

6INIT: Lessons Learnt

peter.hovell@bt.com

BTexact Technologies Adastral Park, Ipswich, UK

Statistics

- •11 plus 2 International sponsoring partners
- •16 months Jan 2000 to April 2001
- •300 man months
 - ⇒200,000:1 compression for this presentation
- •Presentations/demonstrations at:
 - ⇒INET2001, IPv6Forum Seoul ...

What did we do?

Applications

⇒ Selected a number of applications (major and universal)

Network Services

⇒Listed the network services required to support the selected applications

6init Pan European IPv6 network

Designed and deployed a network to meet the required network services

Trials

Trial the applications on the deployed network

Fundamentally an Integration Project

No major investigations into QoS, Interworking etc, no major developments, no fundamental research

Applications

Universal Applications

- ⇒ Multimedia web, audio and video tools
- ⇒ Games: Quake ...
- ⇒ web server/browser ...
- ⇒ Email
- ⇒ Firewall
- ⇒ Common Internet Apps: ftp, ping, traceroute, telnet, rlogin ...

• Major Applications:

- ⇒ SIP VoIPv6
- Newspaper printing
- Multimedia News on Demand (MNoD)
- ⇒ Direct Online Trading (erDOT)

Application Lessons

•Universal Applications:

- ⇒many becoming available
- ⇒"with care" can be made to work
- ⇒porting simple applications (MP3 player) not difficult
- ⇒support across many OS's appearing

• Major Applications:

- → Many relied on IPv6 JAVA SDK:
 - Delivery of technology from outside the consortium potentially problematic
 - Ingenuity of partners played a key to success

Network Services

- Required Network Features:
 - ⇒ Pan European Connectivity
 - ⇒ IPv4/IPv6 Interworking
 - ⇒ Security
 - ⇒ VPN's
 - \Rightarrow QoS
 - ⇒ DNS
- To meet these requirement several design decisions had to be made

Design Decisions

- Dual stack or IPv6 only?
 - ⇒IPv6 Only
- Pan European Connectivity?
 - ⇒ Dedicated bandwidth too expensive (TEN155 considered)
 - ⇒Used a combination of:
 - Dedicated, Tunnels, Dialup N-ISDN
 - Actually aided the project by showing availability/compatibility of different technologies
- Interworking:
 - ⇒ NAT-PT as most mature and available technology has many DNS implications
- Security:
 - ⇒IPsec
- QoS
 - Very difficult without dedicated bandwidth also only limited support in routers

Network Deployment

Pan European IPv6 Network

- ⇒ Based on five regional clusters
 - UK

- France

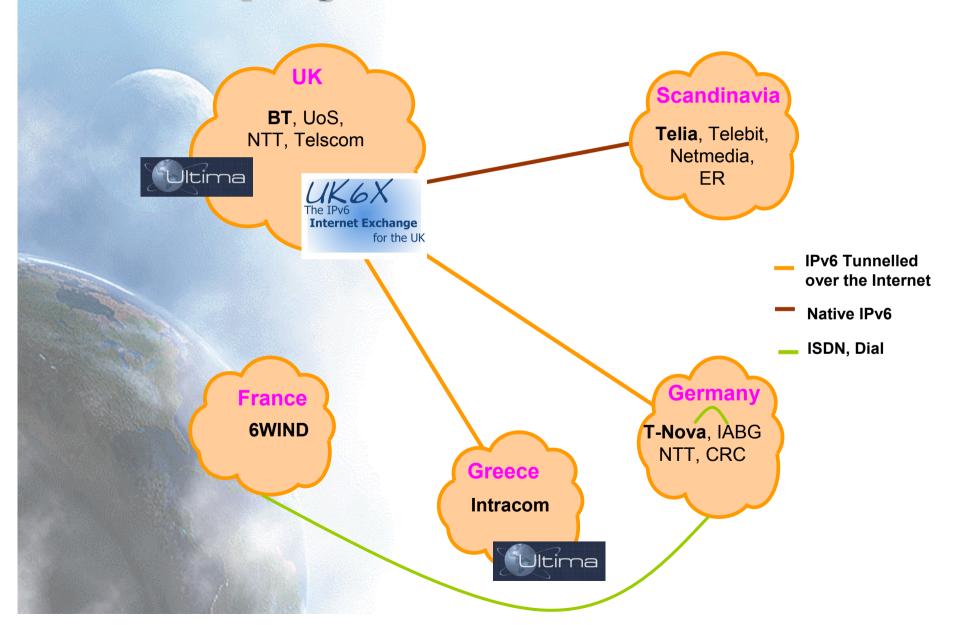
Germany

11

- Greece

- Scandinavia

⇒ Interconnected via an IPv6 exchange point (UK6X) to form the complete 6init Pan European IPv6 network



Deployed 6init Network

Deployment Lessons

- Doing it easier than specifying it!
 - ⇒Education?
- Raw bandwidth not available for free!
- Problems mostly around infrastructure: bandwidth, accommodation, compatibility, complexity etc (ie same as IPv4!)
- •In general most things worked!

Trials

- Networked worked well:
 - ⇒BGP peerings
 - ⇒DNS in most clusters
 - ⇒Interworking
 - ⇒IPsec
 - ⇒QoS not supported in all routers
- Applications
 - ⇒All parties collaborated in some application trials
 - Universal applications worked well:
 - -Video Conferencing and Quake interesting
 - Major application impressive:
 - Newspaper printing
 - Multimedia News on Demand (MNoD)
 - Direct Online Trading (erDOT)

Overall Lessons Learnt

- Project length critical
- Raw interconnection difficult:
 - ⇒Especially when its got to be free
- Dual Stack or IPv6 Only?
- Interworking strategy forces many decisions
- DNS critical
- Porting some applications easy
- There's no substitute for good engineering
- Not considered: OSS, address allocation, access mechanisms, business models, commercial drivers

Task Force Suggestions

- •Put in place IPv6 enablers:
 - ⇒Encourage education, awareness and training
 - ⇒Ensure fundamental research is done
 - ⇒Ensure all new applications are IPv6 aware
 - ⇒IPv6 Interoperability Technical Guidelines
 - ⇒Governmental IT projects (contracts) should have explicit IPv6 future proofing

Thank you - 200,000:1 Compression of the 6init story!

Any Questions?

peter.hovell@bt.com

BTexact Technologies Adastral Park, Ipswich, UK

